Small LDL Cholesterol
A vital MI risk marker
Small LDL Cholesterol

What is small LDL cholesterol?
- Small LDL is a subtype of LDL cholesterol
- LDLs vary in size through genetic determination and dietary lipid intake.
- They all transport triglycerides and cholesterol to the tissues, but their atherogenesis varies according to their size.
- Smaller particles such as sLDL more readily permeate the inner arterial wall and are more susceptible to oxidation.

Clinical significance of sLDL
- sLDL is particularly atherogenic; a person with elevated sLDL has a 3-fold increased risk of myocardial infarction.\(^1\)
- Measurement of sLDL allows the clinician to obtain a more comprehensive picture of lipid risk factors and tailor treatment accordingly.
- Reducing sLDL levels will reduce the risk of CVD and MI.
- Elevated levels of sLDL arise from multiple sources. A major factor is sedentary lifestyle with a diet high in saturated fat. Insulin resistance and pre-diabetes have also been implicated, as has genetic predisposition.

Methods of detection
- Ultracentrifugation and electrophoresis based methods are options for the measurement of sLDL cholesterol.
- These methods are both laborious and time consuming.\(^2\)
- Randox sLDL-‘Ex-Seiken’ test is a direct method for the quantitative determination of sLDL cholesterol using automated chemistry analysers capable of accommodating two-reagent assays.
- The test is completed within 10 minutes.

Key features
- Liquid ready to use reagent
- Wide measuring range: 4.0 – 100 mg/dL
- Completely automated protocols
- Interference - The following analyte concentrations were found not to affect the assay:
 - Ascorbic acid 50 mg/dL
 - Haemoglobin 500 mg/dL
 - Bilirubin 30 mg/dL
 - Triglycerides 1000 mg/dL
- Excellent precision – within run precision was assessed in 10 replicated measurements and CVs were below 3%.
- Save time and resources with the Randox Direct sLDL kit and achieve rapid, reliable results you can trust.

Test procedure
The assay consists of two steps and is based on the use of well-characterised surfactants and enzymes that selectively react with certain groups of lipoproteins.

First Step
\[
\text{chylomicrons, VLDL, IDL, L LDL and HDL} \xrightarrow{\text{CHE & CO}} \text{Cholesterol} + \text{Fatty acid} + \text{H}_2\text{O}_2
\]
\[
2 \text{H}_2\text{O}_2 \xrightarrow{\text{catalase}} 2\text{H}_2\text{O} + \text{O}_2
\]

Second Step
\[
s\text{LDL-C} \xrightarrow{\text{CHE & CO}} \text{Cholesterol} + \text{Fatty acid} + \text{H}_2\text{O}_2
\]
\[
2 \text{H}_2\text{O}_2 + 4\text{-aminoantipyrine} + \text{TOOS}^{*} \xrightarrow{\text{POD}} \text{Purple-red color} + 4\text{H}_2\text{O}
\]

* N-Ethyl-n-(2-hydroxy-3-sulfopropyl)-3-methylaniline

Ordering Details:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct sLDL kit</td>
<td>562616</td>
<td>R1 1x19.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R2 1x8.6</td>
</tr>
</tbody>
</table>

Controls and Calibrators for Direct sLDL kit:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>sLDL Calibrator</td>
<td>CH5050</td>
<td>3x1 ml</td>
</tr>
<tr>
<td>sLDL Control Level 1</td>
<td>LE5013</td>
<td>3x1 ml</td>
</tr>
<tr>
<td>sLDL Control Level 2</td>
<td>LE5014</td>
<td>3x1 ml</td>
</tr>
<tr>
<td>sLDL Control Level 3</td>
<td>LE5015</td>
<td>3x1 ml</td>
</tr>
</tbody>
</table>

References

The only direct automated sLDL kit on the market